Offsite Anesthesia

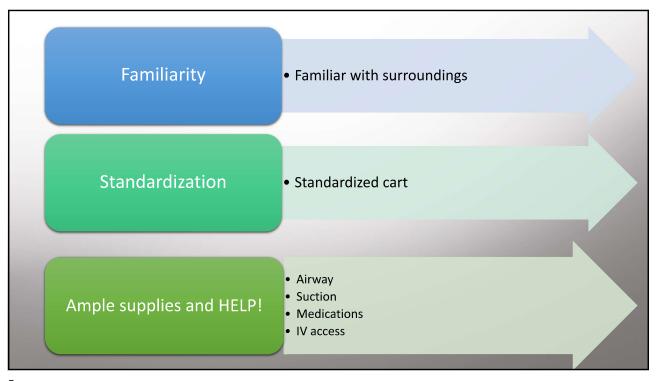
Presented by:
Rebecca Sullivan DNAP, CRNA

1

Objectives

- Discuss the responsibilities of an anesthesia provider to perform a safe anesthetic out of the operating room
- Discuss preparedness of anesthesia provider for patient and own protection when administering anesthesia in remote locations

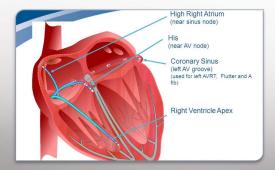
NORA


- Non-Operating Room Anesthesia
- Gi, Cath Lab/EP studies, Bedside Cases, MRI, Radiology department
- Goal is to ensure patient safety and adequate anesthesia to perform procedure in the Non-OR suite
- BE PREPARED!

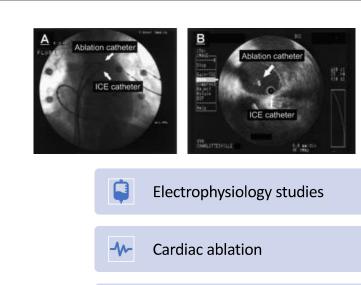
3

Significance of Problem

- NORA Closed Claims have higher frequency of severe injury and death compared to OR cases
- In more than half of NORA-related claims involving deaths, patients were deemed to have received substandard anesthesia care preventable by improved monitoring techniques.
- Most claims were related to respiratory events, specifically inadequate oxygenation and/or ventilation.
- Monitored anesthesia care was the most common anesthetic technique used, contributing to 50% of claims.
 - Oversedation leading to respiratory depression was implicated in a third of all claims.
 - In most claims related to oversedation, there was *limited use of monitoring expired* carbon dioxide or any respiratory monitoring at all.


Δ

5


NORA locations

EP Study/Cardiology Suite

- Location
- Limited Space
- Limited Resources
- Patient Acuity
- Recovery Options
- Risk Factors

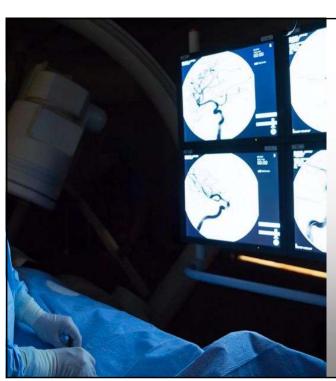
7

Device placement

Radiofrequency Cryoablation

Pacemakers
Implantable Cardioverter Defibrillators

Surgical Fire Victims
Temporal artery biopsy
Mole excision from eyebrow
Thyroidectomy


Considerations

- Limit oxidizer in field
- Avoid tenting of drapes
- Surgical prep
- Cautery considerations

11

Interventional Cath Lab

- Biliary and Hepatic cases
- Nephrostomy tube placement
- Oncology interventions
- Vascular cases
 - Embolization/arteriography
 - IVC filter placement
- TAVR

GI Lab

- Inpatient vs Outpatient
- Shared Airway
- Morbid Obesity trend
- Airway adjuncts available
- Help available
- Radiology cases
- NPO status
- Turnover times

13

Uterine artery embolization Kyphoplasty Bone biopsy Percutaneous transhepatic cholangiography (PTC) Nephrolithotomy Neuroradiology

Anesthesia at the Bedside

- Mobile unit
- Concerns
 - Charting
 - Adequate room to work
 - Shared Airway
 - Adequate supplies
 - "SAM I AM"

15

MRI

- MRI compatible equipment
- Limited access to patient airway [potentially]
- MRI education necessary for staff

17

How MRI works

Image creation through magnetic fields and radio waves

Images surpass ultrasound and CT technology

MRI Precautions

- MRI capable equipment required
- Unaffected by magnetic attractive forces, heating or current induction
- Patient screening preop; healthcare providers screened
- Caution with claustrophobic and morbidly obese patients

19

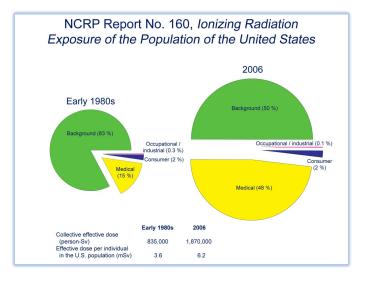
MRI procedures

- Breast and prostate biopsy
- Cryoablation of tumor

Cowles, Charles., Casarez, Vianey., Wiemers, John. "Extreme" Remote Locations Raise Unique Safety Concerns - Anesthesia Patient Safety Foundation. apsf newsletter. Published October 2015.

Radiology Dept

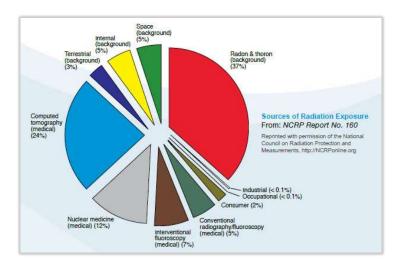
- Remote location
- Limited airway access
- Radiology specific education needed


21

Man-made Radiation Sources

- Diagnostic Uses:
 - X-ray machines
 - CT scanners
 - Nuclear medicine tests
- Therapeutic Uses:
 - Linear accelerators
 - Radioactive "seeds" for permanent implants
 - Other radioactive sources

Radiation Exposure is Increasing



23

So, what has changed?

- Large increase in number of CT scans
- Increase in nuclear medicine procedures
- Newer medical techniques involve higher doses to the patient

Sources of Radiation

25

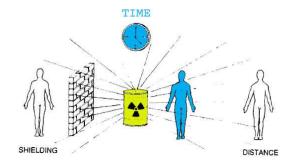
Occupational Dose Limits

- Limits for radiation doses received by occupational radiation workers are defined by the Nuclear Regulatory Commission (NRC).
- <u>Applies only to occupational workers</u> individuals exposed in course of their work.
- Does not include background radiation, medical administration to the worker, or other exposures as a member of the public.

Note: this means that radiation doses to an individual from medical procedures performed on them do not fall under these regulations – a frequent concern of radiation workers.

Occupational Dose Limits

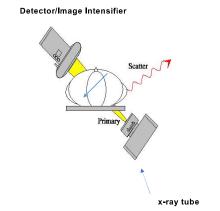
Part of Body	Maximum Annual Dose
Whole Body, Total Effective Dose	5 rem (0.05 Sv)
Lens of Eye, Dose Equivalent	15 rem (0.15 Sv)
Individual Organ, Extremity Dose, Skin	50 rem (0.5 Sv)
Embryo/fetus dose of declared pregnant female (See NRC Reg. Guide 8.13)	0.5 rem (5 mSv) during entire pregnancy (See 10CFR20.1208 for additional information and guidelines)


27

Using Radiation & Fluoroscopy

Radiation Protection Methods

- Minimize Time
- Maximize Distance
- Maximize Shielding

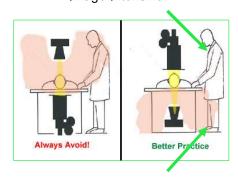

29

What About Personnel Safety?

Physicians and staff using fluoroscopy are exposed to:

- Scattered radiation from the patient
- Leakage radiation from the x-ray tube
- Primary radiation from the x-ray beam if their hands are in the radiation field

Distance: Scattered Radiation

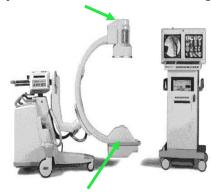


- During fluoroscopy, radiation is scattered from the surface of the patient where the x-ray beam enters.
- Scattered radiation is the main source of radiation dose to staff. It also decreases image contrast and degrades image quality.

31

Distance: C-Arm Position

Image Intensifier



X-ray Tube

- Position the X-ray tube underneath the patient
- The greatest amount of scatter radiation is produced where the x-ray beam enters the patient.

Distance: C-Arm Position

Always stand closer to the detector/image intensifier.

Always stand farther from the X-Ray Tube.

33

Distance: C-Arm Position

- Position the x-ray tube as far from the patient as possible.
- Position the Image intensifier as close to the patient as possible.
- Position the x-ray tube and image intensifier so you are working on the image intensifier side of the patient.

X-ray tube

Image intensifier

Shielding

- Regulations require anyone within 6 feet of a fluoroscopy machine to wear a lead apron.
- You may also wear a lead thyroid shield or leaded eyeglasses, depending on the type and amount of work you do.

35

Dosimetry Badges

- If you have been issued a single dosimetry badge, wear it **outside** your lead apron at collar level.
- If you have been issued two badges, wear the "collar badge" outside your lead apron, and wear the "body badge" underneath your lead apron.
- Fetal badges are to be worn under the protective apron at waist.

Conclusion

- Non OR anesthesia requires proper communication and preparation
- Intention is to provide same standard of care as operative suite with less predictable circumstances
- Awareness of potential hazards to both patients and personnel are paramount for safe anesthetic administration

37

References

- American Society of Anesthesiologists., Charlotte, and American Society of Anesthesiologists. 2013. "NORA: Non- O.R. Anesthesia." ASA Newsletter 77(11): 10–10.
- Cowles, Charles., Casarez, Vianey., Wiemers, John. 2015. "Extreme' Remote Locations Raise Unique Safety Concerns Anesthesia Patient Safety Foundation." apsf newsletter. Ferrari, Lynne R. 2015. "Anesthesia Outside the Operating Room." Current Opinion in Anaesthesiology 28(4): 439–40.
- Judy Mathias. 2017. "Non-OR Anesthesia Care Growing in US." https://www.ormanager.com/briefs/non-or-anesthesia-care-growing-in-us/.
- Mangrum, James Michael et al. 2002. "Intracardiac Echocardiography-Guided, Anatomically Based Radiofrequency Ablation of Focal Atrial Fibrillation Originating from Pulmonary Veins." Journal of the American College of Cardiology 39(12): 1964–72.
- Methangkool, Emily. 2018. "The Perils and Pitfalls of Anesthesia Outside the Operating Room." Anesthesiology. https://opmed.doximity.com/articles/the-perils-and-pitfalls-of-anesthesia-outside-the-operating-room.
- Miller, Ronald D. et al. 2014. Miller's Anesthesia. Elsevier Health Sciences.
- Peterson CD, Leeder JS, Sterner S. Glucagon therapy for beta-blocker overdose. Drug Intell Clin Pharm. 1984;18(5):394-398.
- Statement on Nonoperating Room Anesthesia Services. www.asahq.org. https://www.asahq.org/standards-and-practice-parameters/statement-on-nonoperating-room-anesthesia-services
- Walls, Jason D., Weiss, Mark S. Safety in Non-Operating Room Anesthesia (NORA) APSF Newletter 34 (1)
- Wong T, Georgiadis PL, Urman RD, Tsai MH. Non-Operating Room Anesthesia: Patient Selection and Special Considerations. Local Reg Anesth. 2020;13:1-9. Published 2020 Jan 8. doi:10.2147/LRA.S181458